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Summa~~
It is shown that a compressible elastic body —not necessarily homo-

geneous or isotropic —is hyperelastic provided the work done by all external

forces acting on an arbitrary part of the body vanishe s for every sufficiently

smooth cyclic motion, in which each material point returns to its initial

position with a velocity equal to its initial velocity.

Introduction

Adhering to the terminology of True sdell and Noll [1], we consider a

body composed of a—possibly non -homogeneous —compressible ela stic

material (simple material without memory) in the context of the purely

mechanical theory of continuous media . If such a material is hyperelastic,

and thus possesses a stored-energy function (elastic potential), it is seen

at once from the power-identity appropriate to dynamical processes in

continuum mechanics that the total work done by the actual surface tractions

and body forces external with respect to an essentially arbitrary part of the

body vanishes over any “cyclic motion ”. The latter term connotes a suitably

*The results communicated in this paper were obtained in the course of an
investigation supported by Contract N00014-75-C-0196 with the Office of
Naval Research in Washington, D. C.
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regular motion in which the initial and terminal positions of the body, as

well as the initial and final velocity fields , are coinc ident. It is the aim of

the present paper to establish a converse of this proposition. Specifically,

we seek to show that the vanishing of the work done by all external forces

acting on an arbitrary portion of a not necessarily homogeneous elastic body

in any cyclic motion is also sufficient for the existence of an elastic potential.

In proving this claim we are incidentally led to a rather simple explicit integral

representation for the stored-energy function of a hyperelastic material.

It should be made clear how the present result differs in its purpose

and underlying hypotheses from a related result that is an immediate conse-

quence of the first work theorem introduced by Truesdell and Noll in Article 83

of [1]. In this theorem the authors of [i] confine their attention to homogeneous

elastic bodies. They consider a suitably smooth one-pa rameter family of

homogeneous deformations, and deal with the work done by the actual surface

tractions alone during such a “homogeneous deformation process”. Their

conclusions, which follow from familiar properties of line integrals applied

to paths in the space of second-order tensors, in particular justify the

following assertion: a homogeneous elastic body is hyperelastic if and only

if the traction-work vanishes over any homogeneous deformation process that

is closed in the sense of starting from and terminating in the same position

of the body. The power-identity mentioned earlier , or indeed the equation

of motion , play no role in the setting of the work theorem to which we are

referring . Further, no condition analogous to the required coincidence of

the initial and terminal velocity fields in a cyclic motion needs to be imposed.

The inevitable presence of this velocity condition among the hypotheses of the

present theorem, is a source of analytical complications.
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1. Notation and other preliminaries.

In this section we explain the notation used in what follows and

assemble various continuum-mechanical ingredients’ that will be needed in

the subsequent analysis .

Throughout the present paper e stand s for a three-dimensional

Euclidean point-space (reference space). £ is the space of all nonsingular

second-order tensors, while £
+ 
and £_ denote the set of all second-order

tensors with positive or negative determinant, respectively. Next,I is the

space of all symmetric tensors of the second order and u/the set of all such

tensors that are positive definite. Finally, &‘stands for the collection of

all orthogonal second-order tensors .

Letters in boldface denote tensors of positive order in th ree

dimensions . Further , if v is a vector and T a tensor of order two, the same

symbols will also be employed — in the appropriate contc xt — to denote the

column matrix [v~} and the square matrix [T1~J of scalar component s of ~
and T in the underlying orthogonal cartesian coordinate frame . Here and

in the sequel Latin subscripts are understood to range over the integers

(1 ,2,3). Summation over repeated subscript s is taken fo r g ranted.

Let II be a body which in an arbitrary fixed reference configurat ion

occupies a closed region R (reference region) in e . A motion of H is a

one-parameter family of mappings of 13 into e ,

X X(x,t)= u(x,t)
~~
’
~
cE13 (t~~ t~ t 1) , (1 .1)

‘See [1], as well as Truesdell and Toupin [2], ii~ connec tion with this
expository summary of prerequisi tes.  

-
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depending on the time t as parameter , 
~
(. , t) being the instantaneous

displacement field. The position vector ~ of a point in 13 may be r egarded

as a par ticle label; thu s x1 are material and y. spatial coordinates. A

motion of H will be called an admissible motion, provided ç- satisfies the

following regularity requirements:

(i) 9EC
2 (Rx[t ,t1])

i. e., ‘~~ is twice continuously differen tiable on its domain of definition;’

(ii) ~(~ , t) is one-to-one on 13 V tE[t , t 1]

so that if~~~~( e , t) is the inverse of the mapping~~(.,t), one has

=y V yE 13~ =~~(13, t) (t �t�t 1) ; (1 . 2)

(iii) ~
( . , t)EC ’(R t) V tE[t , t 1]

The particle velocity and acceleration rela tive to e associated with

an admissible motion of 13 are defined by

v(x , t) = ( x ,t) , a(x ,t) ~U(x ,t) V xER (t �t~t 1) (1 . 3)2

and we adopt the notation

~ (y, t) =v(~ (y, t), t) , ~ (y, t) =a (~ (y, t), t) V y EH t (t0
�t�t1) (1 . 4)

for the spatial velocity and acceleration fields. By a çyclic motion of 6

we mean an admissible motion subject to the conditions

‘If A and B are sets , we write AXB for the cartesian product of A and B.
2A dot placed above a functional symbol indicates differentiation with
respect to the time.

- . ---~~
——

~
- --t~ -~~~~~- - — —.~---

, .. --~~~~~~~-~~----“-- —~~---~~~ .~— - .-.-- -~
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~ (x,t ) =~~(x,t1) , v(x ,t ) = v(x , t 1) V xER . (1. 5)
-~~ a.. 0 — — — _%s 0 — a.. a..

Finally, we call F and J the deformation-gradient field and the Jacobian

determinant (relative to 13) of an admissible motion , whence

J= d e t F~ O on R~ [t , t1] . (1 .6) 1

Let p EC(2) and p (. ,t)EC( R t ) (t0�t�t1), respectively, designate the

mass density per unit reference volume and per unit current volume of a

body Il undergoing an admissible motion. In accordance with the postulate

of ma ss balance

p (x) = IJ(x , t) Ip(~(x,t),t) V (x , t)E13x[t ,t1} . (1 .7)

Further, suppose that T(.,t)EC’(R
t) (t 

�t�t
1) is the actual (Cauchy)

stress-tensor field induc ed by such a motion. If e is a Newtonian reference

space , the principles of linear and angula r momentum then imply the

equation of motion

div T(Z, t) +b(Z, t) = 
~~ 

t)i(Z, t) 1a. 
~. (1 .8) 2

T(y,t) = TT(y t) V yERt (t 
�t�t

1)

in which b( ., t) EC(~~) is the instantaneous ac tual body-force density per unit

current volume. The assc~~iated instantaneous nominal (Piola) stress

field a( .,t), rela t ive to the chosen r eference confi gu ra t ion and regarded as

1Subscripts preceded by a comma signify pa rtial diffe r entiation with r espect
to the corresponding cartesian coordinate.

superscript T always indicate s transposition. 

——-- - - —  — —— - -~~~~~~~~~
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a function of position on 13, is defined by

a(x,t) = IJ(x ,t) IT (~ (x,t),t)[FT(x,t)]~~~V xER (t �t�t1) .  (~ 9) 1

Thus, a(.,t)EC’(R) (t
0
�t�t

1) and (1. 8), in view of (1. 7), are found to be

equivalent to

div~ (x,t)+~~x,t)=p (x)a(x,t) 1— 

(1.10)

a(x , t)F T(x t) =F (x , t)a T(x , t) v xER (t �t�t
1) , j

where

f(x ,t) = J(x,t)b(Sr(x,t),t) Y xER (t �t�t
1

) (1. 11)

is the nominal body -force density per unit reference volume.

If s is an oriented regular surface element2 and 
~ =2~

( S, t) ita

in stantaneous motion image , while N(x) V xES and n(y, t) V yE; (t �t~t 1)
a. a. a. a. a.. C)

are the corresponding unit normal vectors, one has the traction-stress

relations

s(x, t) =a(x, t)N(x) V xES (t �t�t1 ) ,
(1 .12)

t(y, t) ~~r(y , t)n (y, t) V yE; (t0�t�t1) , J
where s(., t) is the instantaneous nominal traction vector field on S and

1
1t should be emphasized that while T( ., t) is independent of the choice ofthe reference configuration , a( . , -t) Th not .. Since we deal here with but asingle fixed reference configuration , we refrain from making this de-pendence explicit in the notation used for the nominal stress field.2 This term is to be interpreted in the sense of Kellogg [3]. 

--~~~~~~~~~~~~ -~~~~~~- ~- —— ~~~~
,. - -—~~~~~~~ - -—~~~~~~-- --~~~~-- ,
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t ( . , t) the instantaneous actual traction field on 5
~
. Moreover ,

~~~~~~~~~~~~~~ (t �t�t
1

) (1. 13)
S a.

Consider now an admissible motion ~
( . , t) on 13 (t 0~ t�t1) of a body

8, let ~ be a r egular subregion’ of the region 13 occupied by II in the

reference conf iguration and let ~t =~~
(
~
,t) (t �t�t1). Next , define the power

( rate of work ) of the actual body fo rces and surface tractions acting on the

part of 13 that occupies ~ in the reference configura t ion through

r~ (t) 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . (1 . 14)

a.

Then the second of (1 . 12), together with (1 . 8) and the divergence theorem,

r eadily yield the familiar power identity, valid for t �t�t1,

r~ (t) = $T(y,  t) ev ~ (y, t)dVy + 

~$ ~~
. p(y, t)V~ (y, t)dVy (1. 15) 2

a. a. a.

The f irs t  volume integral in (1. 15) is the “stress powe r ” , the second the

kinetic energy associated with 
~~~~~

. From (1 . 14), with the aid of (1. 4), (1. 9),

(1. 11), and (1 . 12), follows the alternative representation of r
9(t), in terms

of the nominal body-force density and surface traction ,

~The term “regular region” is employed in the sense of Kellogg [3]. Note,
in particular , that 9 is necessarily a bounded closed r egion to which the
divergence theorem applies.
21f A and B are second-order tensors, we write A .B for the inner product
tr (ATB)=A ..B...a. — I.J 13

--

~

- -- -

~

, 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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r9(t) = S f(x , t) .v(x, t)dV + $s(x, t) .v(x, t)dA (t �t�t
1

) . (1 . 16)
9 a.

Similarly, (1. 4), (1.7), (1. 9) enable one to deduce the following alternative

representations for the stress power and the kinetic energy:

S . L ~t)~ !(Z~t~1Vy =$a(x,t).vv(x,t)dV (t �t�t
1
) , (1 . 17)

a.

p(y, t)V2(y, t)dV
y
= $~ 

p (x)v2(x , t)dV (t �t�t 1) . (1 . 18)
a.

We turn now to the constitutive law and in this connection limit our

att ention to a body 8 composed of an elastic material (simple ~~ateria1 without

memory). Accordingly, we assume there is an actual stress- response

function ~,(.,x), defined on £ for every xE13 and having values in1, such tha t

fo r every admiss ible motion of 8,

i(~ (x ,t),t) =g(F (x, t);x) V xER (t �t�t1 ) . (1 . 19)

Moreover, consistent with our previous agreement regarding the smoothness

of the actual stress field T(.,t), we suppose henceforth that gEC1(CxR). The

dependence of g(s ; x)  upon x allows for the possible non-homogeneity of the

material , as far as its stress response is concerned. On defining an

associated nominal stress-response function h(.,x) by means of

- - - . - - . —  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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~~9=  I det F~ g(F;x )(B’T)~~~V (F ,x) E.~x13 , (1.20) 1

one draws from the assumed symmetry of g(F;x) that

h(F;X)FT=FhT(F;X) V (F ,x)EC XH . (1. 21)

Further , (1. 19), (1. 20), and (1. 9) assure that the constitutive law for an

elastic body 8 may also be written as

~(x,t) =h(F(x,t);x) V xE13 (t �t�t
1
) , (1 .22)

which must hold true for every admissible motion of 13. Because of the

stipulated smoothness of g, evidently

At this stage we recall the definition of a hyperelastic material

(“ conservative” simple material without memory). We shall say that 13

is a hyperela stic body if Ii is elastic and there exists a scalar-valued

function W( .;x), defined on £ for every xE6%, such that WEC 2 (4x13) and

h(F;x) = WF(F;~ ) V (F ,x)E .~~ 13 (1. 23)

or , equivalently,

h..(F;x)=aW(F;x)/8F .. V (F,x)E.~x13 . (1 . 24)

Here W is the stored-energy func tion (elas tic potential) , which represents

the strain-energy density per unit reference volume. The spac e £ consists

of the two disjoint domains £+ and £ , which are separated by the set of all

‘Note that here F denotes an arbitrary nonsin gula r second-order tensor ,
rather than thelunction of position and time representing the deformation-
gradient tensor field of an admissible motion.
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second-order tensors with a vanishing dete rminant. In order to render

W unique for a hype relastic bod y with a given nominal s t ress-response

function h , we adopt the convenient normalization

W( 1;x) =W(-1 ;x )  =0 V xE63 . (1 . 25) ’

By virtue of (1 . 17), (1 . 23) and (1 . 1), ( 1 . 3), (1 . 6 ), the stress-power

in an admissible motion of a hyperelastic body is given by

t) .~ V(y , t)dV =~$ W(F(x , t) ;x)dV
~ 

(t �t�t 1) , (1 . 26)
a. a. a.

the integral on the right being the total strain-energy stored in the region

Thus, and on account of (1 . 18), the power-identity (1 . 15) in the present

circumstances takes the form

r9(t) =~ J’ W(F(x , t) ;x)dV +~4~J~~-p (x)v 2 (x , t)dV (t �t�t 1) . (1 . 27)

• We conclude this compilation of prerequisites by citing certain

implications of the principle of material frame indifference (objectivity).

In what follows let 0 be an arbi t rary orthogonal second-order tensor .

Necessary and sufficient for  the objectivity of the constitutive law appropriate

to an elastic body is that

g(QF ;x)= Qg(F;x)Q T V (F ,x)E 4x13  (1. 28)

or alternatively,

1Here and in the sequal I is the idem tensor.
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h(QF;x) =Qh(F;x) V (F , x) E~x 13 . (1.29)

On the other hand , for a hyperelastic body one has

W(QF;x) =W(F;~) V (F ,x)E.~~ R , (1. 30)

provided the normalization (1 . 25) is in force , as has been assumed already.

Suppose, finally,

FE.Z , F=R~y , .E& , UEJ , (1 . 31)

so that R and U are the orthogonal and the symmetric posi tive -definite

factors in the unique rig ht polar decomposition of the nonsingular tensor

• F. Thu s,

RR T 1 a =R ~i~ ~~~~~~~ u =u~~~ = /F
TF (1 . 32)

Moreover , (1. 28), (1. 29) , (1 . 30) yield the well-known conclusions:

~ (F~x) =Rg(U x)R T Y (F ,x)E~ xR , (1. 33)

}~~~~) =~~.~W;2s) V (F ,x )E4x13 , (1 . 34)

W(F;x) = W(U;x) V (F,x)EC~ 13 . ( 1 . 35)

2. A work theorem for hyperelastic bodies.

With our present purpose in mind , we f i r s t  recall a familiar

property of hyperelastic materials.

Theorem 1. Let 6 be a hyperelastic bod y. Then the work

_ _ _ _— __~•.__a~ — —.---—- -.-- —-- •-• — — — — --- — —-
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tl

w9= Sr 9(t) dt =o  (2 .1)

for every cyclic motion of 13 and for every regular subregion 9 of the region

13 occupied by 6 in the reference configuration. Moreover, if h is the nomi-

nal stress-response function of 13 , then

curl h ( F ;x ) = O V  (F ,~ )E4~~R (2 .2)
a.

or , equivalently,

ahjj (~~;~)/ a Fpq =ah pq~~ ;~) /a Fjj V (E ,~~)E~x R  . (2 .3) 1

The conclusion (2. 1) is immediate from the power-identity (1. 27)

for hyperelastic bodie s togethe r with (1. 5), (1. 6), while (2. 3) follows at

once f rom (1. 24) and the assumed smoothness of the elastic potential W.

We now state and pr ove the following converse of Theorem 1, wh ich constitutes

ou r main objective.

Theorem 2. Let Il be an elastic body. Suppose the total work done by the

ac tual body forces and surface trac tions acting on any part of 13 that occupies

a regular subregion of the region 13 occupied by 13 in the reference configuration

vanishes for every cyclic motion of the body. Then the nominal stress-re-

sponse function h sati sfie s (2 . 2) and B is hype relastic. Further, the elastic

potential of B conforming to the normalization (1. 25) is given by

‘Thu a the fourth-order tensor h (F;x) is symmetric in the sense that—E — ‘~~

A sh  (F;x)[BJ =B .h  (F;x)(~~]a. .~~ ....F a.a.
for all second-order tensors A and B.

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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W(F;x) = $h(~U(F)+(l - ~)1;x) .[U(~ ) - i]d~ Y (F ,~ )ECx R , (2 .4)

provided U(F) is the symmetric positive-definite factor of F in its right

pola r decomposition.

With a view toward a proof of this theorem we consider a homogeneous

motion of B, defined by

~~~~~~~~~~~~~~~~~~~~ (t ~t�t1) , (2 .5)

such that

F(t)E~ (t �t�t 1) 
‘ EEC

2
( [t 0, t

1 J ) , F(t ) =F(t1) , fr(t ) =fr(t 1) . (2 .6 )

Clearly, (2. 5) represents a cyclic motion of H for every choice of the

defo rmation gradient F satisfying (2 . 6 ). From (2 . 5), (2 . 6) and the power

identity (1. 15) in conjuction with (1. 17), (1 . 18), one draws

tl t
i

w
9=$r9

(t)dt=j’{$a(x,t).fr(t)dV }dt . (2.7)
a.

Since the body is elastic , (1. 22) holds and (2 . 7) thus leads to

- 

tl

W
9 

J’{ j ’~(~(t) ;x) .~‘(t)dV,Jdt

(2 .8)
9 t0 

~~~~~~~~~~~~~~~~~ -- - —~~~~~~~~~~ ~~~~~ —- - - • •~~~ •~~~~ -~~~
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the interchange in the order of the two integrations being legitimate because

of the assured smoothness of the function E and of the nominal stress-re-

sponse function Ii. But , by hypothesis, the work w9 must vanish for every

regular region 9C13 and the integrand of the last volume integ ral in (2 . 8) is

continuous on 13. Consequently,

tl

$h(F(t) ; x) . f r ( t ) d t = O Vx E H  (2 .9)
to

for every choice of the function F con sistent with (2 . 6).

At this stage we take to = 0 , t1 = 2ir and speciali ze E in (2 .9)  as follows.

Let F be a nonsingular second-order tensor . Define E(t) (0�t~2ir ) in terms

of its components in an orthogonal cartesian frame by means of

F11(t) J 11+ecos t , F22 (t) J’22 +esin t , 1
(2 .10)

0
F . .( t)=F. .  for (i ,j) 1(1 , 1) , (i , j )  1(2 , 2 ) .

F 
By continuity , since is nonsingular , so is E(t) for 0�t�2n and all sufficiently

small positive values of the parameter c—say  for 0<e<c~ . The choice of

F adopted in (2. 10) thus conforms to (2. 6) in this range of e. Next , let

Zir

1(e) =-.~
.ih(F(t);x).fr(t)dtv xER (

~
<
~
<
~ *

) (2. 11)
€ 0

with E(t) (0�t�2tr ) specified by (2. 101.1 Equation (2 . 9) now demands that

‘Note accordingly that the integ rand in (2 . 11) depends also on e.

_ _  ~~~
- . •- - -

~~
•- -• . • - -

~~
- --

~
- - •- •
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2rr

1(e ) =~-$ [_h 1 i t) , sint + h22 (F(t);x)cost]dt = 0 10 (2 . 12)
V xE13 (0<e<€~ ). J

The foregoing identity , upon an appeal to (2 . 10) and to L’H6pital’ s rule ,

readily leads to

rah22 ah 1
1(0+) =r r  - a 

l i
i = 0 V xEH . (2. 13)

L~~
’l l  FzzJ(F x)

0
Since F here is ~~~ nonsingular tensor of order two , one thus infers that

(2 . 3) holds true for i =j  = 1, p =q = 2 . Obvious modifications of (2 . 10)

confi rm that (2. 3), and hence (2 . 2),  is valid for all admissible choices of

i, j  and p, q.

It remains to be seen that 2 is hyperelastic and that the scalar-valued

function W given by (2 . 4) supplies the no rmalized elastic potential of B.

To thi s end it suffices to prove that W is twic e continuously differentiable

on £xR and satisfies (1 . 23) , (1 . 25) .

If one sets

~
(!

~~
) 
~~~

E)
~~(’ 

- 
~
‘ EE.~ 

(0~~~~1) 2. 14)

then (2. 4) may be written as

W(F;x) =S (!’~
);
~

)
~W(E) - i ]d ~~Y (F , x)E~~( R .  (2 . 15)

~ AL -



-16-

We observe first that W(F;x) is indeed defined for every nonsingula r

second-order tensor F and every xEH since hEC 1(CxR) and because S(F,~~)

is a syuixnetric positive-definite tensor’ for every EE~ (0�~~~l) . We show

next tha t W is at least once continuously diff erentiable on £~< 13. In order
to confirm this claim it is evidentl y sufficient to prove that the components

of U(F) in an arbitrary orthogonal cartesian coordinate frame are con -

tinuously dif ferentiable with respect to the components of F in the same

frame. For this purpose we note on the basis of (1. 32) that

E ~~~
(E) ~~~~~~~~ C C(F) FTF (2 . 16)

and let ..~>O denote the eig envalues of U , whence C has the eigenvalues

Further , we designate the fundamental scalar invariant s of U by

cp., so that

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ , (2 . 17)

J
and call the corresponding scalar invariants of C, which also belongs to

I for FEZ. From the Cayley-Hamilton theorem one has

(2 .18)

‘Note that the eigenvalue s of S(F ,~~) a re ~~~.j . + 1 - ~>0, if ~ 
are~the positive

elgenvalue s of ~1(F), which is m i  for eve ry FEE. The set 1’ of all sym-
metric positive-definite tensors of order two is thu s seen to be star-shaped
with respect to the tensor 1. In fact Jcan be shown to be convex.



and (2. 18), together with the first of (2. 16), furnishes

U = U ( ~~) = = ( C + q 2 1)~~
1(cp 1C+cp~~ ) . (2 . 19) 1

Moreove r , (2 . 17) and the analogous fo rmulas for the scala r invarmants of

9 give

2 2 2
~2=Cp2-

Zcp
1C~3

>0 ~3=C~3
>0 . (2.20)

From (2. 16), the last of (2. 17), as well as the last of (2. 20), follows

cp3 -~f l -  I detFi ; (2 . 21)

accordingly cp3 is a continuously differentiable function of the components

of F on £+ and on C.., and thu s on £ = £+LJ C.. . On the other hand , the f i rs t  two

of (2. 20), with the aid of the implicit-function theorem, can be shown to

imply that cp1, cp2 are continuously differentiable functions of 
~l’ ~~~ 

and

cp3. Therefore (2. 19) now assures the desired smoothness of U(F) for

every FEC. According to a remark of John [4J 2 the components of U(F)

can even be shown to depend analytically on the components of

We are now in a position to deduce the gradient WF(F;
~~

) of the

p resumed elastic potent ial defined in (2 . 4). In doing so we shall for the

sake of brevity suppress the argument x. If T is any tensor of the second

order , one finds from ( 2. 14), (2 . 15) that

4.
I . . -1 . . IThe exIstence o,f the tnverse (,~ +cp~ ) is assured since Ct’4 , cp2>0

imply ~ + cpgEl.
2
See Footnote No. 25 in [41.

~~~--— •-~~~~~~~~~ ~~~~~~~~~ - -~~~ - - -- ~~~~~~~~ - - --~~~~—• --—~~~ ~~~~~~~~--~~~~~---  - - -
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T.W F) = T. .~~~~
(
~~~=

ah au
S1~ aF ’~~@rs ~~~~~~~~~~~~~~~~~~~~~~ . (2 .22
0 

pq

in which S and U abbreviate S(F,o~) and U(F), respectively, 6 rs is Kronecker ’s

delta , while 8h (S)/ aF stand s for 8h (F)/aF evaluated at F =S. Inrs a. pq rs pq a. a.
view of (2. 14), U -8 =as ia~, so that (2. 22) may be written asrs rs rs

1 
8h (S) ah (~)1 aS

T .W F(F) S{~ ~~ 
pg 

j a~0 pq rs

ah (S) au
+a 8~ P~~

a. 
+h pq~~~}Tjj~~~ P~ dc~ . (2 . 23)

The term within bracket s in (2 . 23 ) vanishes by vir tue of (2 . 3), and an

integ ration by pa rt s — with attention to (2 . 14) — justif ies

au
~~
.WF(.~

’) =hpqW)Tjj &F~~ 
(2. 24)

Next , from (1 . 31) , (1. 32) follows

:~~:;l a~~ kq iP
Ô q j F

R
ksU Sq+R iP

Ôqj (2 . 25)

where R =R.(F) is the orthogonal facto r of F in its two pola r decompositions. 1

Upon substitution from (2 . 25) into (2 . 24), one arrives at

‘Since B =FU 1, the differentiability of R(F) is implied by the differentiability
of U(F) .

IL . 
~~~~~~~~~~~ • •~~~~~~~~

-

~~~~~~~~~~~~~ •~~~~~ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _
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aR.,
T .W (F ) = R . h .(U)T ..+T.. ~~ R, U h (U) . (2 . 26)a. F a. ip pj 13 13 uF~ ics sq pq —

But, because of the orthogonality of R and on account of ( 1. 21), one has

U 5qh
pq (9)=U pqh 8q (~~) •  (2 . 27)

Accordingly, (a~~~ /aF ..) it~1~ is skew-symmetric and Usqhpq(2) symmetric

with respect to (p, s). The second te rm in the right member of (2. 26 ) therefore

vanishes and thus

T•W F( F )= T •R h ( U ) = T •h ( F )  , (2.28)

the last of the foregoing equalities being a consequence of the objectivity

relation (1 . 34). Since (2 . 2 8) must hold for every choic e of the tensor T, it

follows that W satisfies (1 . 23). Further , (1 . 2 3) and the hypothesis that

hEC 1(XxB ) allow one to infer that WEC 2 (CxR) , as r equired. In addition ,

noting that U(1 ) U(-1 ) = 1 , one confirms on the basis of (2 . 4) at once that

W obeys the normalization condition s (1 . 25) . Thi s completes the p roof

of Theorem 2.

The hypotheses of Theorem 2 can be weakened in one respect

without impairment of the conclusions: as is clear from the preceding proof ,

it suffices to demand that the work w9 of the body forces and surface

traction s vanish merely for eve ry “simple-harmonic” cyclic motion of the

type presupposed in (2 . 10).

Finally, we rema rk on the motivation for the anticipated represen-

tation (2 . 4) of the elastic potential W. According to the objectivity-relation

(1. 35), one needs to construct W ( . ;~~) only on the setl of all symmetric

L ~~~~~~~~~~~~~~
• - - ~~~~~~~~~~~~~~~~~~~~~~

-
. . -
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positive-definite second-order tensors. Now, as ~ ranges over the interval

[0 , 1], ~U + (1 - ~ )1 traverses the “straight-line segment” F from 1 to U,
4. 4.

which lies wholly in1 if U is m i .  Bearing in mind also the required

normalization (1 . 25), it is thus natural to expect tha t

W(F;x) =W (~~(F);x) = $h(S;x).dS , (2 . 29)

with S = S(F , ~
) given by (2 . 14) and F as the path of integ ration for the above

line-integral in the six-dimensional inner-product spac e associated with

I. Upon converting this line-integral into a Riemann integral , one is led

to (2. 4). In this connection we obaerve with the aid of (2. 6), (2. 9) tha t

.dF = 0 V xER , (3. 30)

for every closed path of integration admitted by (2 . 6) that lies entirely in

either of the two disjoint domains £+ or £.~. If (3. 30) were known to hold

for every merely piec ewise smooth closed pa th in C+ or C , one could

construct the desired elastic potential directly in terms of the appropriate

path - independent line integrals.

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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